

Cloud structure from simultaneous ground-based measurements of fluxes and radiances

Alexander Los
KNMI / visiting scientist at NASA/GSFC
Alexander Marshak

NASA/GSFC

Christine Chiu

UMBC/JCET

Warren Wiscombe

NASA/GSFC

Alexander Los KNMI (1. Sept. – 4. Nov.: visiting scientist at NASA/GSFC)

KNMI - Cabauw (The Netherlands)

(51.971 °N, 4.927 °E)

Cabauw Experimental Site for Atmospheric Research (CESAR*):

- 213m measurement tower
- BSRN measurement site (Cab)
- Atm. boundary layer research
- Gnd. based remote sensing:
 - (Doppler, scanning) Radars**
 - 7 channel scanning MWR
 - MP Lidar (later: Raman Lidar)
 - MFRSR
 - Aeronet site + PFR (expected '07)
 - 2NFOV (planned)
- "Evergreen" surface albedo
- Responsibility: Reinoud Boers
 - * http://www.cesar-observatory.nl/
 - ** not all of them yet operational

Cloud optical depth retrievals by combining solar radiation measurements and RT calculations

Some drawbacks of individual methods

Retrievals using

hemispheric fluxes

affected by broken

cloudiness (e.g. Boers et al.

2000)

Retrievals using 2NFOV radiances degraded by cloud edges and clear-sky contamination (Chiu et al. 2006)

Merge methods:

COUPLED

Chiu et al. 2006: best results for

- broken clouds (cloud cover << 1)
- low optical depth (τ < 30)
- large spectral contrast in surface albedo (NDVI > 0.4)

COUPLED "retrieval space"

0.0

cloud cover "low" τ < 30 cloud optical thickness NDVI (spectr. surface albedo contrast)

$$\lambda_1 = 0.67 \ \mu \text{m}$$
: $\rho_{0.67} = 0.05 - 0.10$

$$\lambda_2 = 0.87 \ \mu \text{m}$$
: $\rho_{0.87} = 0.25 - 0.55$

2NFOV + MFRSR ("COUPLED") cloud retrieval method

(Knyazikhin and Marshak, 2005; Barker and Marshak, 2001)

$$I_{\lambda} = I_{o} +
ho_{\lambda} I_{s} F_{\lambda}$$
 from 2NFOV $\lambda_{2} = 0.87~\mu\mathrm{m}$ $I_{0.87} - I_{0.67}$ $I_{s}(au) = \frac{I_{0.87} - I_{0.67}}{
ho_{0.87} F_{087} -
ho_{0.67} F_{067}}$ from MODIS & MFRSR ARM meas.??

2 Examples (stable and unstable)

Oct. 28, 2004; SZA=52, $\rho_{\rm RED} = 0.13, \, \rho_{\rm NIR} = 0.28$

Nov. 11, 2004; SZA=70-75, $\rho_{\rm RED}$ = 0.17, $\rho_{\rm NIR}$ = 0.36

A few specific issues related to the REDvsNIR and COUPLED methods

cloud radiative transfer	Cloud optical prop. different in red $(\lambda=670\text{nm})$ and NIR $(\lambda=870\text{nm})$ spectral regions, e.g. phase function
cloud cover and/or cloud inhomogeneity	COUPLED retrieval algorithm based only on plane-parallel RT calculations, i.e. suppressing 3D structure of cloud field
COUPLED retrieval method	The 2-valued retrieval "REDvsNIR" is reduced to a single index retrieval "COUPLED", i.e. increasing ambiguity

On the way to an improved COUPLED method

How to get stable retrievals under all conditions?

Searching for the extra amount of information: taking a closer look on cloud structures

- 3D view of REDvsNIR: adding fluxes
- Cloud mapping: study of trajectories
- Reviewing the single index retrieval

"low cloud structure"

REDVSNIR LUT

- clustered REDvsNIR
- clustered I_s/F
- small fluxes

Ti=22.241

Ti=22.250

Ti=22.258

TSI

"time" or "Ti": decimal UTC

"large flux"

- scattered REDvsNIR
- vertically alligned I_s/F
- large τ (> 30)
- large fluxes
- cloud edge effect

decreasing CC

"trajectory"

- scattered REDvsNIR
- vert. and horiz. I_s/F
- constant τ (rel. large)
- variable fluxes
- ? : interesting trajectory

"clear vertical view"

- small REDvsNIR
- vertical I_s/F
- $\tau = 0 \text{ (LUT)}$
- "not interesting" yet (no contribution from REDvsNIR)

Concluding remarks

"cloud-trajectory atlas": tool to study cloud structure in combination with radiance and flux measurements

searching for extra amount of information using fluxes in addition to radiances: new "free parameter" available?

attempt to go from single index retrieval to multiple value retrievals: remove ambiguity

